首页> 外文OA文献 >Abelian powers and repetitions in Sturmian words
【2h】

Abelian powers and repetitions in Sturmian words

机译:阿斯图里亚斯语单词中的阿贝尔力量和重复

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Richomme, Saari and Zamboni (2011) [39] proved that at every position of a Sturmian word starts an abelian power of exponent k for every k>0. We improve on this result by studying the maximum exponents of abelian powers and abelian repetitions (an abelian repetition is an analogue of a fractional power) in Sturmian words. We give a formula for computing the maximum exponent of an abelian power of abelian period m starting at a given position in any Sturmian word of rotation angle α. By considering all possible abelian periods m, we recover the result of Richomme, Saari and Zamboni. As an analogue of the critical exponent, we introduce the abelian critical exponent A(sα) of a Sturmian word sα of angle α as the quantity A(sα)=limsupkm/m=limsupkm′/m, where km (resp. km′) denotes the maximum exponent of an abelian power (resp. of an abelian repetition) of abelian period m (the superior limits coincide for Sturmian words). We show that A(sα) equals the Lagrange constant of the number α. This yields a formula for computing A(sα) in terms of the partial quotients of the continued fraction expansion of α. Using this formula, we prove that A(sα)≥5 and that the equality holds for the Fibonacci word. We further prove that A(sα) is finite if and only if α has bounded partial quotients, that is, if and only if sα is β-power-free for some real number β. Concerning the infinite Fibonacci word, we prove that: i) The longest prefix that is an abelian repetition of period Fj, j>1, has length Fj(Fj+1+Fj−1+1)−2 if j is even or Fj(Fj+1+Fj−1)−2 if j is odd, where Fj is the jth Fibonacci number; ii) The minimum abelian period of any factor is a Fibonacci number. Further, we derive a formula for the minimum abelian periods of the finite Fibonacci words: we prove that for j≥3 the Fibonacci word fj, of length Fj, has minimum abelian period equal to F⌊j/2⌋ if j=0,1,2mod4 or to F1+⌊j/2⌋ if j=3mod4.
机译:Richomme,Saari和Zamboni(2011)[39]证明,在Sturmian单词的每个位置处,对于每k> 0的k,都启动abelian幂指数。我们通过研究Sturmian单词中的阿贝尔幂和阿贝尔重复(阿贝尔重复是分数幂的类似物)的最大指数来改进此结果。我们给出了一个公式,用于计算从任意Sturmian旋转角α中的给定位置开始的阿贝尔周期m的阿贝尔幂的最大指数。通过考虑所有可能的阿贝尔周期,我们可以得到Richomme,Saari和Zamboni的结果。作为临界指数的类似物,我们引入角度为α的Sturmian单词sα的阿贝尔临界指数A(sα)作为数量A(sα)= limsupkm / m = limsupkm'/ m,其中km(分别为km' )表示阿拉伯语周期m(上限值与Sturmian单词一致)的阿拉伯语能力(最大程度为重复阿拉伯语)的最大指数。我们证明A(sα)等于数字α的拉格朗日常数。这产生了用于计算α(sα)的公式,该公式以α的连续分数展开式的部分商表示。使用该公式,我们证明A(sα)≥5,并且等式适用于斐波那契词。我们进一步证明,当且仅当α具有有界商,即且仅当sα对于某些实数β是无幂的,A(sα)才是有限的。关于无限斐波那契词,我们证明:i)如果j为偶数或Fj,则最长前缀是周期Fj的阿贝尔重复,j> 1,其长度为Fj(Fj + 1 + Fj-1 + 1)-2如果j为奇数,则为(Fj + 1 + Fj-1)-2,其中Fj为第j个斐波那契数; ii)任何因素的最小阿贝尔时期为斐波那契数。此外,我们导出了有限斐波那契单词的最小阿贝尔周期的公式:我们证明,对于j≥3,长度为Fj的斐波那契单词fj的最小阿贝尔周期等于F⌊j/2⌋,如果j = 0, 1,2mod4或如果j = 3mod4为F1 + 1j /2⌋。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号